
Chapter 8

Pointers
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights

Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.1 Introduction
• Pointers are one of the most powerful, yet challenging to use, C++

capabilities.

• Our goals here are to help you determine when it’s appropriate to

use pointers, and show how to use them correctly and responsibly.

• Pointers also enable pass-by-reference and can be used to create and

manipulate dynamic data structures that can grow and shrink, such

as linked lists, queues, stacks and trees.

• This chapter explains basic pointer concepts.

• We also show the intimate relationship among built-in arrays and

pointers.

• In new software development projects, you should favor array and

vector objects to built-in arrays.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and

Initialization

Indirection

• A pointer contains the memory address of a
variable that, in turn, contains a specific value.

• In this sense, a variable name directly references a
value, and a pointer indirectly references a value.

• Referencing a value through a pointer is called
indirection.

• Diagrams typically represent a pointer as an arrow
from the variable that contains an address to the
variable located at that address in memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and

Initialization (cont.)
Declaring Pointers

• The declaration
int *countPtr, count;

 declares the variable countPtr to be of type int * (i.e., a
pointer to an int value) and is read (right to left),
“countPtr is a pointer to int.”

– Variable count in the preceding declaration is declared to be an
int, not a pointer to an int.

– The * in the declaration applies only to countPtr.

– Each variable being declared as a pointer must be preceded by an
asterisk (*).

• When * appears in a declaration, it is not an operator; rather, it
indicates that the variable being declared is a pointer.

• Pointers can be declared to point to objects of any data type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and

Initialization (cont.)

Initializing Pointers

• Pointers should be initialized to nullptr

(new in C++11) or an address of the

corresponding type either when they’re

declared or in an assignment.

• A pointer with the value nullptr “points to

nothing” and is known as a null pointer.

• From this point forward, when we refer to a

“null pointer” we mean a pointer with the

value nullptr.
©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and

Initialization (cont.)

Null Pointers Prior to C++11
• In earlier versions of C++, the value specified for a null

pointer was 0 or NULL.

• NULL is defined in several standard library headers to

represent the value 0.

• Initializing a pointer to NULL is equivalent to initializing a

pointer to 0, but prior to C++11, 0 was used by convention.

• The value 0 is the only integer value that can be assigned

directly to a pointer variable without first casting the integer

to a pointer type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators

Address (&) Operator

• The address operator (&) is a unary operator
that obtains the memory address of its operand.

• Assuming the declarations
int y = 5; // declare variable y
int *yPtr = nullptr; // declare pointer variable yPtr

 the statement
yPtr = &y; // assign address of y to yPtr

 assigns the address of the variable y to pointer
variable yPtr.

• Figure 8.2 shows a representation of memory
after the preceding assignment. ©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators (cont.)

• Figure 8.3 shows another pointer representation in memory

with integer variable y stored at memory location 600000

and pointer variable yPtr stored at location 500000.

• The operand of the address operator must be an lvalue—the

address operator cannot be applied to constants or to

expressions that result in temporary values (like the results

of calculations).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

