Chapter 8
Pointers

C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights
Reserved.

In this chapter you'll:

Learn what pointers are.

Learn the similarities and differences between pointers and references.

Use pointers to pass arguments to functions by reference.

Understand the close relationships between pointers and built-in arrays.

m Use pointer-based strings.
= Use built-in arrays.

m Use C++11 capabilities, including nu11ptr and Standard Library functions begin and
end.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.1 Introduction
8.2 Pointer Variable Declarations and Initialization
8.3 Pointer Operators
8.4 Pass-by-Reference with Pointers
8.5 Built-In Arrays
8.6 Using const with Pointers
8.6.1 Nonconstant Pointer to Nonconstant Data
8.6.2 Nonconstant Pointer to Constant Data
8.6.3 Constant Pointer to Nonconstant Data
8.6.4 Constant Pointer to Constant Data
8.7 sizeof Operator
8.8 Pointer Expressions and Pointer Arithmetic
8.9 Relationship Between Pointers and Built-In Arrays
8.10 Pointer-Based Strings
8.11 Wrap-Up

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.1 Introduction

Pointers are one of the most powerful, yet challenging to use, C++
capabilities.

Our goals here are to help you determine when 1t’s appropriate to
use pointers, and show how to use them correctly and responsibly.

Pointers also enable pass-by-reference and can be used to create and
manipulate dynamic data structures that can grow and shrink, such
as linked lists, queues, stacks and trees.

This chapter explains basic pointer concepts.

We also show the intimate relationship among built-in arrays and
pointers.

In new software development projects, you should favor array and
vector obyects to built-in arrays.

8.2 Pointer Variable Declarations and
Initialization

Indirection

* A pointer contains the memory address of a
variable that, in turn, contains a specific value.

* In this sense, a variable name directly references a
value, and a pointer indirectly references a value.

» Referencing a value through a pointer is called
Indirection.

» Diagrams typically represent a pointer as an arrow
from the variable that contains an adaress to the
variable located at that adadress in memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

count

count directly references a
variable that contains the value 7

countPtr count _ y
Pointer countPtr indirectly

—» 7 references a variable that
contains the value 7

Fig. 8.1 | Directly and indirectly referencing a variable.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and

Initialization (cont.)
Declaring Pointers

* The declaration
int *countPtr, count;

declares the variable countPtr to be of type 1nt * (i.e., a
pointer to an 1nt value) and is read (right to left),
“countPtrisapointerto int.”

— Variable count in the preceding declaration is declared to be an
int, nota pointerto an 1nt.

— The * in the declaration applies only to countPtr.
— Each variable being declared as a pointer must be preceded by an
asterisk (*).
« When * appears in a declaration, it is not an operator; rather, it
Indicates that the variable being declared is a pointer.

 Pointers can be declared to point to objects of any data type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 8.1

Assuming that the * used to declare a pointer distributes
to all names in a declaration’s comma-separated list of
variables can lead to errors. Each pointer must be
declared with the * prefixed to the name (with or without
spaces in between). Declaring only one variable per
declaration helps avoid these types of errors and
improves program readability.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Good Programming Practice 8.1

Although it’s not a requirement, including the letters Ptr
in a pointer variable name makes it clear that the variable
is a pointer and that it must be handled accordingly.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and
Initialization (cont.)

Initializing Pointers
 Pointers should be initialized to nul Iptr
(new in C++11) or an address of the

corresponding type either when they’re
declared or in an assignment.

A pointer with the value nul 1ptr “points to
nothing” and is known as a null pointer.

* From this point forward, when we refer to a
“null pointer” we mean a pointer with the

2-2014 by Pearson Education, Inc. All

Value n U_l -l p-t@)lﬁ‘g. Rights Reserved.

% Error-Prevention Tip 8.1

@ Initialize all pointers to prevent pointing to unknown or
uninitialized areas of memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.2 Pointer Variable Declarations and
Initialization (cont.)

Null Pointers Prior to C++11

 In earlier versions of C++, the value specified for a null
pointer was O or NULL.

 NULL is defined in several standard library headers to
represent the value O.

* Initializing a pointer to NULL Is equivalent to initializing a
pointer to O, but prior to C++11, O was used by convention.

« The value O is the only integer value that can be assigned
directly to a pointer variable without first casting the integer
to a pointer type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators

Address (&) Operator

* The address operator (&) Is a unary operator
that obtains the memory address of its operand.

« Assuming the declarations

int y =5; // declare variable y
int *yPtr = nullptr; // declare pointer variable ypPtr

the statement
yPtr = &y; // assign address of y to yPtr

assigns the address of the variable y to pointer
variable yPtr.

* Figure 8.2 shows a representation of memory
after the preceding-assignment.

yPtr y

Fig. 8.2 | Graphical representation of a pointer pointing to a variable in
memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators (cont.)

 Figure 8.3 shows another pointer representation in memory
with integer variable y stored at memory location 600000
and pointer variable yPtr stored at location 500000.

« The operand of the address operator must be an /value—the
address operator cannot be applied to constants or to
expressions that result in temporary values (like the results
of calculations).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

